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V. On Ellipsoidal Current-Sheets.

By Horace Lams, M.A., F.R.S., Professor of Pure Mathematics in Owens College,
‘ Victoria University. :
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= It is a problem of some interest in Electromagnetism to determine the natural modes
= O of decay, and the corresponding persistencies, of free currents in a given conductor.
E 8 When this has been solved it is an easy matter to find the currents induced by given

varying electromotive forces. ,
The general theory for a system of linear circuits is of course well known. If the
variables 4, %5, . . . 1, which specify the currents, be so chosen that the electro-

kinetic energy T and the dissipation-function ¥ are both expressed by sums of
squares, say

PHILOSOPHICAL
TRANSACTIONS
OF

9T = Ly + L2+ . . + L2,
2F = Rly.lz + R2y22 + o . + Rnynzo

then y,, %5, . . , are for the present purpose the normal coordinates” of the
system ; and the equations of motion of electricity are of the form

Ly + Ry=TE,

where E is the external electromotive force of the type in question. In the case of
free currents, E = 0, and consequently

a
A \
A
P 9

~ y = Ae ™,
2 where
=
@) = If we put
ES 5 r=A1=LJR,
L O _, . : .
[ then 7 may be called the “modulus of decay,” or the “persistency,” of free currents

of this type.

In considering the effect of varying electromotive forces, it is convenient to suppose
these expressed, as regards the time, in a series of simple harmonic terms, each of

which may be taken separately. Assuming, then, that T « ¢#/, we have, for the
induced current,
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132 PROFESSOR H. LAMB ON ELLIPSOIDAL CURRENT-SHEETS.
L E _ E __Ecos(). -0
Y= Ry gL R+ R ¢
if
tan 0 = pr.

Hence the phase of the currents lags behind that of the inducing electromotive force
by an amount arc tan pr. This remark, obvious as it is, is of some importance in
relation to the practically interesting question of the rotation of a conductor about an
axis of symmetry in a constant magnetic field. The magnetic potential of any normal
type will be proportional to cos sw or sin sw, where o is the azimuth about the axis
of symmetry, and s is integral (or zero). If now, as in Maxwrir’s ¢ Electricity,
§ 600, we employ coordinate axes moving with the conductor, the electromotive forces
relative to these will vary as e, where p is the angular velocity of rotation. On
account of the symmetry about the axis, the retardation of phase above spoken of
comes to this, that the system of currents of any normal type is, owing to its inertia,
displaced relatively to the field through an angle 1/s arc tan spr, where = is the
modulus of decay proper to the type. (See §§ 7, 16, below.)

For other than linear conductors the problem above stated was first solved by
MAXWELL in the case of an infinite plane sheet of uniform conductivity. The cases
of solid spherical and cylindric conductors, and of thin spherical and cylindric shells,
have been treated by Prof. C. Niven,* Lord Ravieiem,t and the writer.] It is
remarkable that, with a certain exception,§ no difference of electric potential, and
consequently no surface distribution of electricity, is called into existence during the
decay of free currents in conductors of the forms mentioned.

In § 675 of his ‘ Electricity and Magnetism,” MaXWELL has indicated a certain
arrangement of currents over the surface of an ellipsoid, which produces a uniform
magnetic field in the interior. I do not know that it has yet been moticed that this
arrangement fulfils the conditions for a natural mode of decay of free currents in a
thin ellipsoidal film whose conductivity (per unit area) varies as the perpendicular
from the centre on the tangent plane; or, say, in a thin shell of uniform material
bounded by similar and coaxial ellipsoids. This is proved in Part I. of the following
paper ; and we thence easily find the currents induced in such a shell when situate in
a uniform magnetic field of varying intensity ; or, again, the currents induced by
rotation of the shell in a uniform and constant field.

I have attempted to generalise these results and to ascertain the remaining normal
types of currents in a shell of the kind indicated. In Part IL is given the complete
solution of this problem, including the determination of the corresponding persistencies,

% ¢ Phil, Trans.”, 1882.

+ ¢ Brit. Assoc. Rep.’, 1882.

1 ¢ Phil. Trans.’, 1883 ; ¢ London Math. Soc. Proc’, vol. 15, pp. 139 and 270.

§ That of the currents of the “Second Type” in a spherical conductor.  Such currents cannot,
however, he excited by any electromagnetic operations outside the sphere.
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for the case where two of the axes of the ellipsoid are equal, when the Lam#’s fune-
tions which naturally present themselves in such an investigation reduce to spherical
harmonics, and so can be handled with comparative facility. 'The solution of the
problem of ¢nduced currents can then be obtained in a very simple manner.

Of the special forms which the conducting shell may assume, the most interesting
is that in which the third axis (that of symmetry) is infinitesimal, so that we have
practically a circular disk whose resistance varies as ,/(a® — 7%), where » is the
distance of any point from the centre, and a the radius. - In view of the physical
interest attaching to the question, it would be desirable to have a solution for the case
of a uneform circular disk rotating in any magnetic field ; but, in the absence of this,
the solution for the more special kind of disk here considered may not be uninstructive.

It appears that, except in the case of currents symmetrical about the axis, when the
ellipsoid is one of revolution, there is always a surface distribution of electricity in
the problems considered in this paper.

L

1. If o/, o', o, be the components of electric current at any point of a thin con-
ducting film ; F, G, H, those of electric momentum at any point (z, v, z) of space ; the
following conditions must be satisfied. At all points external to the film we must
have

v?F =0, v?G =0, vH=0, . . . . . . (1)

where v ? = d?/da® 4 d*/dy® 4+ d?/dz®. The functions F, G, H, are everywhere con-

tinuous, but their derivatives are discontinuous at the film ; viz., we have

dF , dG aG , dH  dH ,
= — — —_— = — R — == — 2
4, T, 47, an t dmw’, . (2)

dw + dv,

where dv,, dv,, are elements of the normal drawn from the film on the two sides. If
w, v, w', satisfy the solenoidal condition over the film, these conditions ensure that

e +——o..,.,.,..@

everywhere. The electric potential i satisfies the equation
viy=0

at all points external to the film; it is everywhere continuous, but its normal deriva-
tives may be discontinuous at either or both of the surfaces of the film.

If p" be the resistance of the film, per unit area, the equations of electromotive
force are
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L, dF g L A6 dy L, dH dy
PU=—"0 =2 PU=T T PYET g a4

In these equations v is supposed to have the value appropriate to the space included
between the two surfaces of the film, which may differ in form from the values which
it has in the external space on either side.

In any natural mode of decay the time occurs through a factor of the form e™,
where A is real and positive. The preceding equations then become

4 d";" v d"!" /. (Z‘P .
pu :}\F_?ol_a;’ pv:)\(}—-—v&;; pw :)\H—-dz. N )

2. Let us apply this to the case of an ellipsoidal shell whose thickness varies as the
perpendicular = from the centre on the tangent plane; say it equals ewm, where eis a
simall numerical constant. If p be the specific resistance of the material, we then have

p = plew.

Let the semi-axes of the shell be a, b, ¢, and let the axes of coordinates be taken
along these. In the most important type of free currents the lines of flow are in
planes perpendicular to a principal axis. If this axis be that of z, the current-
function over the surface of the ellipsoid is of the form

¢ =Cz
The corresponding values of u’, v/, w/, are

’ =Y

(o4
C, v = ;2 C, w = 0.

The values of F, G, H, in the internal space are

F=—2raboC.y| -

o0 +)Q |
v Todg o, (6)
G= %mMCwLW+@QI
H=0 J

where

Q={(@+a)(*+9) (@ +a)3

The corresponding values for the external space are obtained by replacing the lower
limit of the integrals by the positive root of

o e w
: - =1 . . . . . . (7
a2+g+lﬂ+(]_+c~+q ()
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These values of F, G, H, satisfy (1); they are continuous at the film, and their
normal derivatives satisfy (2).% '

We now find that the equations (5) are satisfied, provided we assume for the value
of the electric potential within the substance of the film

1[1:A95'y,(8)

and properly determine A. If we write, for shortness,

©

L = 27 abe [0 @190Q’ M = 27 abc J-O e iqé-)—@ s N =2nabe jo @ -fggﬁg ;
the equations in question reduce to
— pCJel* = — AMC — A,
pClea* = ALC — A,
whence for the “ persistency ” we have
=\ = %iﬁ?‘}%: ‘(4 — NS L)
Also
2 2
A:f.(%ﬁ?{;;(l (0

The value (8) of  will obtain throughout the internal cavity of the ellipsoid, but
in the external space we shall have

o0

_ dg
= Ay L @+ +9Q

the lower limit being defined by (7). The continuity of i at the outer surface of the
film requires

@ dl 2 2
A1=A—:-( 7 = 2rabe. - b

L@T @+ oQ Mo A

Unless a = b, there will be a distribution of electricity over the outer surface, the
density o being determined by
. 4o d_\k‘ d

K =dv Ty oo (1)

where K is the specific inductive capacity of the surrounding medium, and dv, dv,,

* See, for instance, F'errers’ ¢ Spherical Harmonics,” chap. vi.
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136 PROFESSOR H. LAMB ON ELLIPSOIDAL CURRENT-SHEETS.

denote elements of the normal, drawn from the surface on the two sides. Since

dq/dv, = 2=, we find without difficulty

at

o _p/1l 1\La®>—-M» wary
”—< >Wazbgc"""'(]2>

3. Some particular cases of the formula (9) may be noticed. For a spherical shell
we have L = 4, and thence

which is right. For an ellipsoid of revolution (¢ = b)

dr — N ea_
2 p

T =

(13)

when the currents are symmetrical round the axis ; whilst, in the case of currents in

planes parallel to the axis (say ¢ = Cz),
r=Wr—L) TS (1)

For the prolate form we have

1
L:M=27T<;‘2 __JMIOg—"

\} )
263 1—e !
, ) ) . l}, ... .. (19)
N=4w<§z—1><§;log1—;—e—-l>J
and for the oblate form
9 ™
L=M=2n <\/(1_ )arcsme—-l-;e) i
] 1 r, S L (1e*
N=47r< \/( — )Arcsmc> )

e denoting in each case the excentricity of the meridian section.

Again, if we make ¢ = o, we get an elliptic “homaeoidal ” cylinder. 'We then
have

M= N=o0o:. . . . . . (D

* Maxwell’s ¢ Electricity,” § 438.
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so that for the case of currents circulating round the cylinder

dmre  alb?

r= e e (19)

The surface density of free electricity is then given by

dmo __p ) a? — %
K 7 ¢ a8

w=xy.C. . . . . . . . . (19)

For a circular cylinder (18) gives
=27 a,
which is right.

For currents parallel to the axis of the cylinder (say ¢ = Cux),

dmre  al?

P

p a+b

(20)

If in (18) or (20) we make o infinite, we get the case of two uniform parallel plane
sheets at a distance 2b apart. The persistency of uniform parallel straight currents
flowing in opposite directions in the two planes is then B

T:h,(Zl)

4. Such special results as these may, of course, be obtained more easily by inde-
pendent processes. Thus for a cylindrical shell of any form, if a current of strength C
circulate round each unit length, the magnetic induction in the interior is parallel to
the axis and equal to 4#C. Hence, if R be the resistance of unit length to currents
circulating round it,

d N
RC = — £ (47C8),

where S is the area of the cross-section. This gives
r=47S/R. . . . . . . .0 0L (22)

For a “homeeoidal ” cylinder we have, if ds be an element of the elliptic contour,
and £ the “excentric angle,”

p ds = pdsjem = pab dé/ew?,
MDCCCLXXXVIL—A. T
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whence
_ ™ a? @ + b b
R=p'ds = e ab

giving, of course, the same value (18) of 7 as before.

If we wish to determine, not merely the persistency, but also the distribution of
free electricity, we may proceed somewhat as follows. Taking the case of an elliptic
cylinder, and resolving parallel to the principal axes, we have, as before,

’ oY ’ wL ,
u=-b-2“0, v=70, w =0,

and, at the surface,
F=~=~My.C, G=Lz.C, H=0,

where L, M, have the values (17). Resolving in the direction of the current,

p 0= (F d°+(x‘[‘/> i

ds

dar ab @ P dr
._a )\.w<zbé+?)§>0—'~g"

S

The resistance p’ is here supposed independent of z, but is otherwise unrestricted.
Introducing the excentric angle & we have, since w ds = ab d§,

%: dEC-}— Masin? 4+ beos?€) C. . . . . . (23)

Integrating from ¢ = 0 to &€= 2,
4 ab\ = [ p’ ds,

which agrees with (22). The value of  over the film is found by integration of (28),
p’ being supposed a known function of & We can then find two functions which
satisfy v?¢ =0 and are finite, &c., throughout the interior and exterior spaces
respectively, and coincide at the film with value just indicated. Again, within the
substance of the film itself, the electromotive force in the direction of the normal must
be zero. This gives

ZEAF 4 %Y _w,
0="AF+ 700G -
or
dr .’ way
i )\C.........(24)
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where d8 is an element of the thickness of the film, directed towards the outer surface.
If o, o}, be the densities of free electricity at the inner and outer surfaces respectively,
we then have

Amoy Ay Y

K - (ZVO dS (25)
%m B @ d_\_]f s e e e
K 7 dy .cl3

dv,, dv,, denoting, as before, elements of the normal, drawn from the film, on the inside
and outside respectively.

For the case of a homeeoidal cylinder this process leads to the result already
obtained. For other laws of thickness there will, in general, be a distribution of
electricity on both surfaces of the film.*

5. Another case of interest is obtained by supposing ¢ infinitesimal, so that the
conductor may be taken to be an elliptic disk whose resistance per unit area varies
according to the law

In the case of a circular disk the formula (13) is replaced by

a?

T = (477—' N) 4:p'm"
where we may put
N_,_m¢
4 2 a,’v
- ™
T (@t — )
/ r?
P—PO\/<1"';§>
Hence
T=oC (28

* I find, however, that in the case of a film bounded by confocal cylinders the inner surface alone
becomes electrified.

T The symbol p’ here refers to the disk. Since this is the limit of a double film, its resistance at any
point is half that of the corresponding portion of the film on either side.

1 For an elliptic disk

Ei(e) ¢
Nidr=1— 12 __ 7,
fem VA=) a
where a is the semi-major axis, e the excentricity, and E, the complete elliptic integral of the second
kind. This gives
;= 2mab (e).
@ p? 1 'po"

T2
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The current at any point is proportional to
. .

It would be interesting for many reasons to have a solution for the case of a uniform
disk, but at all events the above result shows that the time-constant of a disk of
radius @ and uniform resistance p’ must be considerably less than 4'93 a/p’. I find,
by methods similar to those employed in Lord Ravreier’s ¢ Sound ’ (§§ 89, 305, &c.),
that the true value lies between 7a/p’ and 2'26 a/p’, the latter value being probably
not far removed from the truth.* For a disk of copper (p = 1600 C.G.S,) whose radius
is a decimetre and thickness a millimetre this lower limit gives ‘0014 sec. For disks
of different dimensions the result will vary as the radius and the thickness conjointly.

6. Let us next calculate the currents induced in a homoeoidal shell when situate in
a uniform magnetic field (, B, y) of varying intensity. It is sufficient to consider the
case where the lines of force are parallel to a principal axis. Also the expression for
the magnetic force may be supposed resolved, as regards the time, into a series of
simple harmonic terms, each of which may be taken separately. Putting, then,

a=0, B =0, y=1eé7,

and denoting by F, G, I, the components of vector potential due to the field, we
may write

: wL .
W= — -2 Cer, V= o C e, w'=0,
1

and the corresponding components of electric momentum at the film will be

F=—MCyér, G=LCaxe?, H=0.

Assuming .
Y = Axy e”,
and substituting in the equations '
y _F_dF_dy
pU=— "= o= &e., &ec.,
we find '
—pCleb* = ipMC+ §ipl— A,
pClea? = — ip LC — Fopl — A,
whence

€

{e<i+%2> +(L+M)ip} O=-wl

#* [See ¢ Roy. Soc. Proc.,” vol. 42, 1887, p. 294.]
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or, by (9),
=~ 1
= e LW (27)
The retardation of phase of the induced currents relatively to the electromotive
forces of the field is arc tan pr, as usual. When p is very great in comparison
with 771 this is equal to #/2. Since the magnetic force in the interior of the shell,
due to the currents alone, is given by

aG _ dF _ int
@—dy——(L—‘—M)CGl),

we see that in this case the currents just neutralise, in the interior, the magnetic
action of the field, in accordance with a well-known principle.

7. Take next the case where the shell rotates with constant angular velocity p
about a principal axis (z) in a uniform and constant magnetic field. It is shown in
Maxwrrr’s ¢ Electricity, § 600, that the problem is the same if we suppose the shell
to be fixed, and the field to rotate in the opposite direction, provided we add to the
electric potential the function

W=p@F—aG). . . . . . . . . . (2)

First let us suppose the lines of force to be perpendicular to the axis of rotation, so
that we may write for the components of the field

a =1 cos pt, B = — Lsin pt, y=0;

whence
F=o, G=0, H=I(wsinpt+ycospt)=1I(y—ix)ert, . (29)
if, as usual, we retain in the end only the real parts. Hence the solution of our

problem follows by superposition from the results of the preceding section. Omitting
the time-factor ¢?, we assume for the current-function

¢ = Cx + Dy,
which gives
u’ ESD )
5
, @2
’0:—-7350 f(30)
S — Y o
w bQC azDJ
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The corresponding values of ¥, G, H, at the film are

F= DNz l

G =— CNz (31)
H= OCMy— DL:UJ
If we further assume
v+ =@x+Bye . . . . . . . . (32)

and substitute in the equations

., dF  dF d ,
U= T W) & e

then, equating coeflicients, we obtain the following four equations to determine
A,B,C,D:—
ple® . D= —ipN.D— A )
—plec*.C= pN.C—-B L
—pleat. D= pL.D—pl—A [’
p/eb*. C = —ip M.C —ipl — B |

(33)

Hence

[eh+a)+ M+ fo=—ipL

€

[l D) +in@+3|p=pt

/

If 7,, 7, denote the persistencies of free currents of the types ¢ = Cx, ¢ = Dy,
respectively, these equations may be written

C= " PTy ] ___Im“_» B
T 1+dpr, M+ N ‘

Lo (34)

__pmy 1
D_l—l—ip'rgL-!-NJ

The components of magnetic force within the shell, due to the currents alone, are
found to be

a= M+ N)C, B=(L+N)D, y =0,
so that we have for the total magnetic field inside

1
" ]
14-4pm,

o4 a= ,8+,§= vy—-{-:);:(). Lo (35)

1+'Zp'r1’

These diminish indefinitely as p increases.
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If we write
p T = tan o, P Ty = tan w,,

and restore the time-factor, the expression for the current-function becomes, on
discarding the imaginary part,

—
»
&,
=
S

in w,

¢>=:——-—ﬁ @ sin (pt — w1)+L+Ny cos (pt —wy). . . . . (36)

E

The currents flow at any instant in a system of ellipses whose planes are parallel to
one another and to the axis of rotation. When the ellipsoid is one of revolution
about z we have L =M, w; = ,. The planes of the currents are dragged round, as
it were, in the direction of the rotation of the shell, through a constant angle w, from
the direction of the magnetic force in the inducing field, in accordance with a general
principle pointed out at the beginning of this paper.®

8. When the lines of force are parallel to the axis of rotation there are no induced
currents, but only a superficial distribution of electricity. The calculation of this
distribution involves assumptions which vary with the particular theory of electro-
magnetism adopted ; and even MAXWELL's theory has been differently interpreted
in this respect by different writers. It may be well, therefore, to state with some
care the view here taken.

Considering, for the sake of simplicity, the case of a solid conductor rotating in a
field of uniform intensity y about an axis (z) parallel to the lines of force, and
supposing the axes of , y, to move with the solid, then, on the hypothesis that there
are no currents, we have, throughout the interior,

e
0= y.pr =

. |
0=7.py—%>,. N ¢4
— i
O_— —dZJ

whilst in the surrounding dielectric (taken to be sensibly at rest)—

* The case of a spherical shell has been discussed by C. N1ven (loc. cit.) and J. LarMOR, ¢ Phil. Mag.,’
Jan., 1884.

MaxwrLL has considered the currents induced by rotation of a solid ellipsoid (see STEwART and TarT,
‘Roy. Soc. Proc.,’ vol. 15, 1867, p. 291), leaving out of account, however, the mutual action of the currents
themselves. This is equivalent to supposing the period of rotation to be long in comparison with the
modulus of decay of free currents.
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dmf Ay
K da ]
drg _ Ay
K -_ Clg/ }, . (38)
dmh A |
K ™ dz

where f, g, h, are the components of dielectric polarisation, and K the specific inductive
capacity. We have also the solenoidal condition

af  dg | dh
dm-i-dy'—l-dz-—o. P 1))

It is to be carefully borne in mind that nothing is known of the function ¢ beyond
what is contained in these equations, except that it is everywhere continuous. The
familiar electrostatic relations of ¢ may be deduced from these equations by putting
p = 0. In the present problem we have

=ipy@E*+vy)+const. . . . . . . . . . (40)
throughout the conductor, whilst in the external space s satisfies the equation
vy =0,

with the conditions that its value at the surface shall agree with (40) and its first
derivatives vanish at infinity. The surface density o is then given by

K d
o-=lf+mg+nh=—4;&—;~1:,. Coe oo (41

where [, m, n, are the direction-cosines of the element dy, of the normal drawn
outwards.

The solution of this problem for an ellipsoidal conductor is obtained by an adapta-
tion of the results given by FERRERs (¢ Spherical Harmonics,” chapter 6, §§ 29, 30). I
do not think it worth while to transcribe these, as the result for the more specially
interesting case of an ellipsoid of revolution, and in particular for a circular disk, is
given below in § 15.
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1L

9. The result of §2 can be generalised, and it can be shown that the different
normal types of free currents in a homceoidal shell are obtained by equating the
current-function ¢ to the LamE’s functions of various orders. But it may be sufficient
here to consider the case where two of the axes of the shell are equal, when the
functions in question reduce to spherical harmonics.

Taking first the case where the ellipsoid is of the prolate form, we transform to
elliptic coordinates ({, u, o) or (5, 0, ) by writing

z=ky (1 —p?) /(>—1)cosw = ksinf sinhy cosw
y=ky (1 —p*) v/ (F—1)sinw = ksinf sinhy sinwl,
r=k{p = k cos f coshy J

(42)

the axis of z being that of symmetry. The value of u may range from — 1 to + 1,
that of { from 1 to . The surfaces { = const. are confocal ellipsoids of revolution,
whose semi-axes are :
a=b=Fk,/({>—1)=ksinhy,
c=k¢{ = k cosh,

the distance between the common foci being 2k. The value of { for the surface of the

shell will be distinguished, where necessary, by {,. The perpendicular on the tangent

plane at any point of the shell is
AV

VA (43)

LAPLACE’s equation V2V = 0 transforms into
(44)

d 2, @V 1@V _d Al _1 &V
{e-wih+ L =glo-o% + 255

Considered as a function of u, w, V may be expanded in a series of spherical
harmonics whose ceeflicients are functions of ¢, and it is easily seen that each term of
the expansion must separately satisfy (44). Taking first the case of the zonal
harmonic, if we put

V=P,(n).Z
where
_1.35. .@Cn—=1)[ nn—1)  _,
P = B e = S
n(n—=1)(n=2)(n=3) ,_
+ 2.4 —1)(2n —3) F B } (45)

we find

d A2

- 0F +n0+nz=0, . . . w

MDCCCLXXXVIIL.—A. U
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showing that Z must be & zonal harmonic of order n, of the first or second kind. We
thus obtain the solutions
V=P, (). P.()*

V=P, (. Q)

where Q, denotes the zonal harmonic of the second kind, viz. :—

at
Q)= P (‘:)J BOPE -1y

(47)

§+1 2n—-1

=14P.(0)log ;5 Py (0) = 57— 35 Poms (O —
— [ cum1y (2 DO+ 2)
‘"1;3..(2n+1){c T+ 2(2n + 3) e

+DHm+2)(m+3)n+d,_,
4@t @n+ 5 © 5+~-~} (48)

-+

The former of the solutions (47) is appropriate to the space inside the shell, the latter
to the external space.
In like manner, when V involves w, we have the solutions

V = (1 g)s/zdP (1) (g _ 1),,/2d81)n(§) COS}SQ) }

o (49)t
V_U_zwﬂwm@_wwmmw%mf‘ )
= I‘L dus ags sin J

10. Proceeding now to the problem of free currents, we shall show that the condi-
tions for a normal type are satisfied whenever ¢, considered as a function of u and e,

* The following are the values of the first four solid harmonics of this type, expressed in terms
of , y, 2:—
Py () P (©) = 2,
1Py (1) Py (§) = } {6 — 3 (2% + y*) — 20},
KPy (1) P3 (€) = 32 {102* — 15 (a® + 1°) — 67},
P, (1) Py (0) = 5 {2802* — 84022 (% + 92) + 105 (2? + y2)? — 240%%2% + 12042 (2% + y*) + 24%4}.
t I have here only recapitulated, for purposes of reference, the principal steps in the deduction of
the solutions (47), (49). For details see Hring, ‘ Kugelfunctionen,” vol. 2, part ii, chap. ii.; or
FERRERS, ¢ Spherical Harmonics,” chap. vi.
The following are the values of a few of the more important solid harmonics of the form given by
the first of equations (49) :—

n=1 s=1: @, 9.

n=2 s=1: Yz, yz.

n=2, s=2: 9 (2® — 9?), 18ay.

n=38, s=1: 22{202— 5@+ y?) — 44?}, 29 {2022 — 5 (2? + yz) — 472},
n=3, s=2: 2252 (2® — o), 450wyz.

n=3, s=38: 225 (2% — 3ay?), 225 (3a%y —3°).

n=4 s=1: 2520 {282 — 21 (2% + y?) — 12k2}, 202y {282° — 21 (a® + 4?) —12k%}.
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is a zonal, tessaral, or sectorial harmonic of integral order. Since any arbitrary
value of ¢ can be expanded in a series of such harmonics, the results thus obtained
will enable us to represent the decay of any initial distribution of current whatever.

If ds,, ds,, be linear elements drawn on the surface along a meridian and a parallel
of latitude respectively, viz.,

_ V& =)
Bk a e ] N :10)

ds, =/ (42— 1) /(1 — ) do j
the current may be resolved into the components

— f along the meridian, towards the positive pole ; and

g;i along the parallel, in the direction of  increasing.

n

Take, first, the case of the zonal harmonic

$=C.Pu(w) . . . . . . . . . . (51)

The currents then flow in circles round the axis of z, the strength of the current at
any point being

dP,
D) (52)

C B/ (&F — 1) \/(1 - l"g) du

If O be the magnetic potential due to these currents, we have
viQ =0,
with the conditions that at the surface {,
Q, = Q, + 4n¢,

(the suffixes denoting the values on the two sides), whilst the normal derivative is
continuous. Assuming

QO=AP”(/"’)P71(C) (53)
2, =BP, (k) Q. (l) ! .
the surface conditions give

BQ. (&) = AP, (&) + 40,
BQ.) (L) =AP/(L);

whence, in virtue of the relation

P/ OQW PO =51, - - - . (54)

U 2
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we find
A =47 —1)Q/ (). C} (55)*
Bedr(y? — 1) PY().CI" ©

Owing to the ‘symmétry about the axis, there will be no difference of electric
potential, and the electromotive force of induction will be everywhere in the direction
of the current. The magr;etic induction across any element of the surface will be

o dQ)
-—;l;:ds ds, = k%’ dé,olL ds,

= —k (L - 1)d§d,.,,ozw N 13!

Substituting from (53), and integra,tihg over the portion of the surface bounded by
a parallel of latitude and including the positive pole, we find for the total induction
through the parallel

= Srb (L — DR (L) Q/ (1) [ Pwda.c.

- If the system of currents defined by (51) remain always similar to itself, the electro-
motive force round a parallel is equal to — d/d¢ of this. The electromotive force at a
point is derived by dividing by 27k / ({;> — 1) / (1 — p?). Since '

! _ - P
RACL O

we obtain in this way

4 SN O dP ac
S W DR Q@ 0 — ) T T )
Equating this to
/d(,b
P@:_

where qu/d.s hdb the value ()2) and p’ = p/ew, we find that all the conditions of the
problem are satisfied, provided .

dac C V
atT =0
where
4] € X /A ’
==t L@ = PRIQQE) - (59

* We may prove in a similar manner that in the case of an ellipsoidai shell with unequal axes
magnetised everywhere in the direction of the normal so that the “strength” ¢ is proportional to a
Lan6’s function, the potential on either side is everywhere proportional to ¢.
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Since .
P()=¢
g ¢ + 1
Ql (C) l g C 1)

this gives, for n =1,

2qrk? 1
T= = GCO(CO "'1)2{;2% —-—%—bg g_z{—l};

or, putting
a=ky/(L*—1), L=1/e

2mate (1 1 —¢*., 1+4e L
= p {eg_ 9% 0 1——e}’ (59)
which agrees with (13).
For n =2, I find
2ma’e [3 — 2684 T, 1—¢ 1+e)
=" { S logl_e}.. S (60)

The case of a spherical shell mé,y be deduced from (58) by making k=0, { =
k{ = a. For large values of { we need only retain the first terms of the series in
(45), (48). In this way we reproduce the known result

R )
T @2n+1)p

11. The simplest plan of dealing with the case where the current-function is a
tessaral or sectorial harmonic is to consider the current round any infinitely small
circuit bounded by meridians and parallels. If R, S, be the components of electric
momentum along a meridian and a parallel respectively, we have

g% _ AR 4}
Pas, ™ — ar ~ ds,

g _dS _dy (61)
Pas,™ " a dst
or, putting
. PP, \/(go '_‘,“J)
P= ™ ke & V(5 — 1)
e E-—p  dp_ _dRdy_ ¥
The L& -0 — ) do it dp dp | (52)
_._.(1 o4 dS ds, @r
ke, —‘u)d,u,—_({t do o |

Eliminating 1,
NN K 25@} ¢ — @5_6}
ket | dp { (1 =) wl T o—naz ) de?

=t (Ma) -~ 5w} o
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If we now assume

$=0(1—p)e? ”Wsmsw. N (7))

the first member of (63) reduces to

— P i
kego{n(n+1)+§02_1}¢,. N (1))

by the differential equation of tessaral harmonics. Again

d [ ds, d dso\ aQ .
%<R&;>—@<S&—;>_—k(§§—l) T (69)

where Q is the magnetic potential due to the currents (64); for, if we multiply each
member by dudw, the left-hand side is equal to the line-integral of the electric
momentum round an infinitesimal cireunit, and the right-hand side gives the magnetic
induction through the circuit. To find Q, we assume

Q=A(1l—p )3/2 < Pn(ﬂ) (E—1)"? d?@ sin sw )

0, =B(1— )“”2 dPn(ﬂ) (&— )‘/2 & Q"(C) sin so |
J

(67)

for the spaces inside and outside the shell respectively. If we write, for shortness,

T, ) = (£— 1)3/2M§) l

* (69)
o FQu(8)
s —_ Qe $/2
U0 = @ =P |
the conditions to be satisfied at the surface of the shell give
BU(L) = AT, (&) + 4nC,
a0 (&) dls (&) |
B i, = A a, :
whence
8 ”
A=y @ - C
Y (1))

—_ s i_n:—:_:f Qe T
B (_) 4 (CO ) dg, Jl
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the reduction being effected by the formula

AT, au,s Jots 1
Uigg =N = rasesy (70)*
Hence the right-hand side of (63)
a dQ

==k = 1) 5 a5
_ dA dT: 2P () .
=—k(P-1)7 dfo(l— PR = " sin so,
(Y=L gy B 2 dLi dU, d
= (=) Vauk = (L0 — 1)d§0 @ (71)

by (64) and (69). Equating (65) and (71), we see that the assumption (64) satisfies
the conditions of a normal type, and that the corresponding modulus of decay is

— (1 dhe [0 — s & (&° — 17 daT.s (&) U (&)
A T PR (7 s (R A 72)
The accuracy of this result may be tested by putting ¥ =0, {, = o, k{, = o, when
we obtain the correct result
dara’e
@n+ 1)p

for the case of a spherical shell.

The case of the sectorial harmonic is obtained by putting s =nin (72). When
n =1, in which case ¢ « ¥y, we obtain

 2mie &2 (&2 — 1P {Qlo L+l &2 —2}
=T, =1 |2%®g 1T g1
or, writing .
L= 1/e, B —1)=a?
2mra’e 1 j — 1+e 1 — 26?7
{ log —_ },

263 1 —e e

T= p 2-2¢
which will be found to agree with (14).
The results (58) and (72) were originally obtained by a method more analogous to
that of § 2, the currents and the electric momentum being resolved parallel to x, , 2.
This method is much longer than that here given, and involves the determination of

* TODHUNTER, ¢ Functions of LAPLACE, &c.,” § 109.
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the electric potential . It may be worth while, however, to record the value of Al‘ll
thus obtained for the space included between the two surfaces of the film, viz. :—

Yy=D(T,, — ) cos so + E(1,, —W_)cosso, . . . (73)

where

‘g l - s dsl)n /- dsPn g
e S &

n = l” 8 (1 — p2)P @ P"(f‘) (52 1) di?z_gf)’

——;n—l-é

and D, E, are certain constants. The first part of (73) corresponds to a distribution
of electricity on the outer surface of the film, the second to a distribution on the inner
surface. In the case of the sectorial harmonic, E = 0.

12. When the shell is of the oblate form, the elliptic coordinates to be employed
are as follows. We write

x=1r/(1 —;&2)\/(@2+ 1) cos @ = k sin 6 cosh 7 cos @
y=k /(1 —p*) /(P4 1)sino=rksinfcoshysinew &, . . . (74)
2= kul = k cos O sinh 7 |

where { may range from 0 to . The surfaces { = const. are confocal ellipsoids of
revolution, the extreme case {= 0 being a circular disk of radius £ in the plane xy.
Comparing these equations with (42), we see that they may be obtained by writing
o{ for { and — ¢k for k. The equation v?V = 0 therefore becomes

a 1 d2V d av 1 d*v
dp,{(l - I”*z) } — dot OE{(]‘ + 42)'({_@;} + 1+"Ezdw2 . (75)

* The type of solutions symmetrical about the axis is

V=P, (»). Z,

where

%.{(1+§2)C§Z—Zé;}—n(n+l)Z=O. N ¢4

One integral of this is

- 1.3.5...2n— . n(n— — nn—1)(n—2)(n—=3), _ .
pu@ =t O g e e gy L s ()

* See FERRERS, ¢ Spherical Harmonics,” chap. vi.
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this becomes infinite for { = . The second solution is

Cw
0 0=r0| GoreErs

2n —1 2n — b
= (=) {pn( ) arc cot { — %1—%“*20”_1 0+ 5(n — 1) Dr-s 0 — .. .},
i { {1 (n + 1) (n + 2) {8 '

13 (2t

4+ Dn+D@+Hn+4),
+ 2.42n + 3)(2n + 5) 4 5"'“-}, . (78)

the latter expansion, however, being only convergent when { > 1. This function
¢ () vanishes at infinity.
Hence we have the following solutions of (75) :

V= Pn(u) Pall )1

79
V=P (.. 79

the former being appropriate to the space inside the ellipsoid, the latter to the
external space.*
In like manner, when V involves » we have the solutions

V= (1—p2)”?- [ P (#) (@ + 1) @Mﬁlc.os}‘ga)l

dg’  sIn (80)
on o O P,L ds g, e
V=(1—p)yri) (ll«) (0 + 1) _Zlgg_{) Z;)E}Swj

It seems unnecessary to go through the details of the investigations corresponding to
those of §§ 10, 11. The results are, for the zonal harmonic,

¢=C.P, ()

_ 4k 2 dpa () dgu (&) \
T= n(n-{—l)PCO(CO ) d, g, k. .o (81)

and, for the tessaral harmonie,

¢>.—;C.(1—/u,2)”2 "(’U')sms

r= (=) drieln—s & (GA+1) dts (&) duws (&)
- p Intsa@m+1) @GP+~ dg,  dE,

(82)

* The second solution is finite even when ¢ = 0, but its space derivatives are infinite at the focal circle
2* + y? =k, 2=0.
MDCCCLXXXVIL—A. X
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“where
@& p, (&
v @)= @+ e 0,
g2 T ()
it (§) = (& +1)" =5~

When 7 = i, {81) becomes

27 ke
=Ty (&4 1) {arc cot, {; — é’f%_i} :
or, putting
b (GG +1)=a L4 L=1/e
T= g 5/“(1.* ) arc sin ¢ — - - e (83).
P e 2

which agrees with (13).
13. If we make {, infinitesimal, we get results applicable to a circular disk, of the
kind considered in § 5, provided n — s be odd. Putting k = a, k{, = ¢, and

ple = 2p'm = 2pyc,

where ¢ is ultimately made to vanish, the formule for the symmetrical currents

become
. P2\F ]
¢,=O.Pﬂ{<1-—&—2>}, L (8

r= P QO (89)

=0

where » denotes the distance of any point of the disk from the centre. For small
values of { we have, n being odd,

1.3...n T
’ - .7 . /___—__ 7
pn(é)—24'(n_1)’ (In—' 22)71;
whence
a4+ 1 7% 1.3...n 2
Y {2‘4...(77,-{-1)}" coe e (86)

For n =1, this gives
T = 772(1/ 2,001,

as in § 5. The persistencies of the successive symmetrical types are as
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For the tessaral harmonic

V70 AP, (w)
Ay

2
o= A/ (1-2)

. Zvral%—'? 1 dt,* duﬁ
T=(=)" Pol m+sn(m+1)—s dé‘ d§

sinso,*, . . . . . . . . (87)

¢=C

where

we have

From the series (77) we find, without difficulty,
dt, _ 1.3...(n+5s)
[dé‘g o 2.4...(n—5—1)

n — s being odd. Also from the second line of (78), under the same restriction,

du,f v ZT_C?L
ac (=)3 e’
when { = 0. Hence

- e '\7'14‘—‘8 (%—rs) 2
T {n(n+1)—stp, It {2 (nms—-l)}' Coror (88)

The most important of the types (87) is that in which # = 2, s = 1, when
=S5 ma/p, .

14. The methods of §§10, 11, might be applied to determine the currents induced
by simple harmonic variations of a magnetic field ; but it is unnecessary to go through
the calculations, as the result can be written down at once from the following
considerations.

We must first suppose the magnetic potential (Q, say) due to the field to be
expanded, for the space near the conductor, in a series of terms of the forms given by
the first lines of (47) and (49)t; or of (79) and (80), as the case may be. Each of
these terms will act by itself, and produce a current-function ¢ of the type (51) or
(64). Now, in § 11, the equation of free currents of any normal type was brought to
the form

a
=T, . . ... (89)

* The current lines are the orthogonal projections on the plane ay of the contour lines of spherical
harmonics drawn on a sphere of radius a.
t F. B. NeuMany has shown (¢ Crelle,” vol. 37) how to expand the potential of a single magnetic pole
in this way.
X 2
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156 PROFESSOR H. LAMB ON ELLIPSOIDAL CURRENT-SHEETS.

the left-hand side being obtained as the electromotive force necessary to balance the
resistance, and the right-hand side as the electromotive force of induction due to the
decay of the currents. If 7 be the modulus of decay of the type in question,

r=—J/p.

Now let ¢ represent a fictitious distribution of current over the ellipsoid, which shall
have the same magnetic effect in the interior as the actual inducing field. This
distribution is found at once from (69). The equation of induced currents will then be

Lop=1T(% + %)
oY

When the free currents have died away all our functions will vary as e?’, where p
measures the rapidity of the changes in the field. Substituting in (90), we find

. —apT
qS_T-:}_hT-W...........(Ql)
When pr is very great this becomes
¢=—0.
The result (91) may be verified in the problem of § 6.

15. Let us next consider the rotation of the shell in a constant field. There will
be no currents due to those terms in the expansion of Q which are zonal solid
harmonics ; the only effect of these being a certain surface electrification. We may
complete the investigation of §8 by finding the density of this electrification in the

case of an oblate ellipsoid of revolution rotating in a uniform field about an axis
parallel to the lines of force. We have to find a function ¢ which shall have the

value

g=3py @+4)+C. . . . .. 0oL (92

at the surface of the conductor ({ = ), and shall satisfy v?¢ =0 throughout the
external space. Denoting by o the equatorial radius, (92) may be put in the form

p=CH3pya® —Fpya®. Po(u). . . . . . . . (93)

Hence in the external space

_ 1 0 1 % (%)
‘l‘ - (C + %p'ya?) % (go) 5*132070('21)2 (lu‘) s (;))'
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But
, _ 1
9% (C) - e+ 1’
_ql/_(é‘._) [ ,,1 + Z’z (g)
6@ " p@a®E@+D T p @’
and k? d{/dv) = =/{,, Hence, by (41),
o I © 1
K = dvy, T B (&P + 1)arccot &, (C+ spye)

., 0 1 _ D (& s,
sPyo Py (k) {pz e L&+ Lp <co>} #

For the case of a disk we have, as in § 5,

e e/

aly, = ¢,

and

where ¢ is ultimately made = 0. Also

=% @O=7% p/(0)=0,

whence
4o 2
—faz,n.\/(az ) (C+3pya2) 7r\/(0ﬂ (20&2—3T2)
2
= O =) (e

The total charge on both surfaces of the disk is
2
Z(C+ipya) K

The constant C is of course to be determined by the other conditions of the
problem. If the axis of the disk be uninsulated, we shall have C = 0.

16. The only terms in the value of Q which give rise to sensible currents in a
rotating disk are those tessaral solid harmonics for which n — s is odd.

If the value of Q, referred to fixed axes, be

o=A.(1 - ,ﬂ)s/zdP 1) (o 4 1y dz{;sz) cos sw,. . . . . (95)
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the corresponding value of ¢ will be

— . P d' P "
(f):20 (1 _MZ)N-—(Z,L_{;—'COSSCU’%' e e e e (96)
where, by the formulee analogous to (69);
— — )¢ ln-—s diui‘f] sl
A==l L) ©

|n —s 1.3..(n+5s)

— 2“ nm—e 3
%C'!Z”f_tf'2-4'.(n~s—-1)’
1.3...(n -9
—_— Yo I
=—2m0 2.4, (nds—1) " T (97)

It now, to use MAXWELL's artifice, we pass to axes of «, ¥, moving with the disk,
we must write

_ o @D, ()
p=C(1— ,ulg) 2 -—d/_lf‘& cos S(w —l'-pt),

where p is the angular velocity of the rotation. For the trigonometrical term at the
end we may write ¢*©*#9 if we retain in the end only the real part. IHence for the
induced currents we have, by (91),
o aspT ¢
¢ = 1+ dspr 7

where 7 is the persistency of free currents of the type (7, s).
Putting
7 = arc tan spr,

we find, finally, on returning to fixed axes of x, ¥,

. AP () .
¢ = Csiny (1 — p?)"? —;Z;YQL—) sin (so — 7). « . . . . . (99)
The system of currents is stationary in space, but is displaced relatively to the field
by a greater or less angle

~are tan spr,

according to the speed of rotation. The maximum value of this is #/2s for a suffi-
ciently rapid rotation.

# This represents a fictitious distribution of currents which would give at all points of the disk the
same normal force as the actual field.
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The most important type of induced currents is got by putting n = 2, s = 1,1in (95).

In this case _
Q oz,

so that the lines of force at the disk are normal to it, but the direction of the force is
reversed as we cross the axis of 4. The current-function relatively to axes displaced
through the proper angle » varies as

va/(1=0)

The current-lines for this case are shown in the figure. The signs + and —
indicate where the normal force due to the field is towards or from the spectator.

In the next type we have n = 8, s = 2, so that
Q < z (2 — y°),

and the current-function (relatively to displaced axes as before) varies as
72
xy ,\/ <1 — a~>

# [It may be shown that, referred to the same axes, the potential y~ varies as
— pox (1 — 2r%a?).

The equipotential lines are not orthogonal to the current-lines, except in the case of the circle » = af+/2.
—Note added June 30, 1887.]
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